29 research outputs found

    Model-Based Problem Solving through Symbolic Regression via Pareto Genetic Programming.

    Get PDF
    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust models by goal softening and adaptive fitness evaluations. In addition to the new strategies for model development and model selection, this dissertation presents a new approach for analysis, ranking, and compression of given multi-dimensional input-response data for the purpose of balancing the information content of undesigned data sets.

    Constructing a no-reference H.264/AVC bitstream-based video quality metric using genetic programming-based symbolic regression

    Get PDF
    In order to ensure optimal quality of experience toward end users during video streaming, automatic video quality assessment becomes an important field-of-interest to video service providers. Objective video quality metrics try to estimate perceived quality with high accuracy and in an automated manner. In traditional approaches, these metrics model the complex properties of the human visual system. More recently, however, it has been shown that machine learning approaches can also yield competitive results. In this paper, we present a novel no-reference bitstream-based objective video quality metric that is constructed by genetic programming-based symbolic regression. A key benefit of this approach is that it calculates reliable white-box models that allow us to determine the importance of the parameters. Additionally, these models can provide human insight into the underlying principles of subjective video quality assessment. Numerical results show that perceived quality can be modeled with high accuracy using only parameters extracted from the received video bitstream

    Model-based problem solving through symbolic regression via pareto genetic programming

    Get PDF
    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust models by goal softening and adaptive fitness evaluations. In addition to the new strategies for model development and model selection, this dissertation presents a new approach for analysis, ranking, and compression of given multi-dimensional input-response data for the purpose of balancing the information content of undesigned data sets

    Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming

    No full text
    This paper presents a novel approach to generate data-driven regression models that not only give reliable prediction of the observed data but also have smoother response surfaces and extra generalization capabilities with respect to extrapolation. These models are obtained as solutions of a genetic programming (GP) process, where selection is guided by a tradeoff between two competing objectives - numerical accuracy and the order of nonlinearity. The latter is a novel complexity measure that adopts the notion of the minimal degree of the best-fit polynomial, approximating an analytical function with a certain precision. Using nine regression problems, this paper presents and illustrates two different strategies for the use of the order of nonlinearity in symbolic regression via GP. The combination of optimization of the order of nonlinearity together with the numerical accuracy strongly outperforms ldquoconventionalrdquo optimization of a size-related expressional complexity and the accuracy with respect to extrapolative capabilities of solutions on all nine test problems. In addition to exploiting the new complexity measure, this paper also introduces a novel heuristic of alternating several optimization objectives in a 2-D optimization framework. Alternating the objectives at each generation in such a way allows us to exploit the effectiveness of 2-D optimization when more than two objectives are of interest (in this paper, these are accuracy, expressional complexity, and the order of nonlinearity). Results of the experiments on all test problems suggest that alternating the order of nonlinearity of GP individuals with their structural complexity produces solutions that are both compact and have smoother response surfaces, and, hence, contributes to better interpretability and understanding

    On the importance of data balancing for symbolic regression

    No full text
    Symbolic regression of input-output data conventionally treats data records equally. We suggest a framework for automatic assignment of weights to data samples, which takes into account the sample's relative importance. In this paper, we study the possibilities of improving symbolic regression on real-life data by incorporating weights into the fitness function. We introduce four weighting schemes defining the importance of a point relative to proximity, surrounding, remoteness, and nonlinear deviation from k nearest-in-the-input-space neighbors. For enhanced analysis and modeling of large imbalanced data sets we introduce a simple multidimensional iterative technique for subsampling. This technique allows a sensible partitioning (and compression) of data to nested subsets of an arbitrary size in such a way that the subsets are balanced with respect to either of the presented weighting schemes. For cases where a given input-output data set contains some redundancy, we suggest an approach to considerably improve the effectiveness of regression by applying more modeling effort to a smaller subset of the data set that has a similar information content. Such improvement is achieved due to better exploration of the search space of potential solutions at the same number of function evaluations. We compare different approaches to regression on five benchmark problems with a fixed budget allocation. We demonstrate that the significant improvement in the quality of the regression models can be obtained either with the weighted regression, exploratory regression using a compressed subset with a similar information content, or exploratory weighted regression on the compressed subset, which is weighted with one of the proposed weighting schemes

    On the Importance of Data Balancing for Symbolic Regression

    No full text

    Multi-objective Genetic Programming for Visual Analytics

    No full text
    Abstract. Visual analytics is a human-machine collaboration to data modeling where extraction of the most informative features plays an im-portant role. Although feature extraction is a multi-objective task, the traditional algorithms either only consider one objective or aggregate the objectives into one scalar criterion to optimize. In this paper, we propose a Pareto-based multi-objective approach to feature extraction for visual analytics applied to data classification problems. We identify classifiability, visual interpretability and semantic interpretability as the three equally important objectives for feature extraction in classification problems and define various measures to quantify these objectives. Our results on a number of benchmark datasets show consistent improve-ment compared to three standard dimensionality reduction techniques. We also argue that exploration of the multiple Pareto-optimal models provide more insight about the classification problem as opposed to a single optimal solution.
    corecore